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Abstract

A stable FDTD algorithm is developed for simulating Maxwell’s equations in anisotropic dielectric materials with prin-
cipal axes not aligned with the grid. The algorithm is stable because the finite-difference operator that converts D to E is
symmetric and positive semidefinite; for contrast, a previously developed asymmetric algorithm is shown to suffer from
late-time instabilities. The presented algorithm has second-order error for continuous dielectric materials, and the error
can be reduced to third-order by Richardson extrapolation. Applied to dielectrics with sharp interfaces, the algorithm
has first-order error, even when averaging the dielectric within partially filled grid cells. However, averaging the dielectric
permits Richardson extrapolation to obtain second-order error.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Simulating electromagnetic waves in dielectric materials is important for many applications that control
electromagnetic energy, such as photonic crystals and dielectric accelerator structures. Simulating materials
with tensor dielectric constants is important because many outstanding dielectrics (such as sapphire, which
has very low losses at microwave frequencies) are anisotropic. Finite-difference time-domain (FDTD) algo-
rithms allow large, efficient simulations with the flexibility to simulate complexities such as dispersive materials
or charged particles interacting with electromagnetic waves.

We will develop and demonstrate a stable FDTD algorithm for simulating Maxwell’s equations in non-
uniform tensor dielectrics that are neither dissipative nor active. The algorithm has second-order error in con-
tinuous dielectrics, but first-order error in discontinuous dielectrics; it reduces to the standard Yee algorithm
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in the presence of isotropic dielectrics. (In this paper, we use ‘‘has second-order error’’ to describe an algorithm
that, for example, computes a mode frequency f that differs from the real frequency f0 by a quantity propor-
tional to Dx2, where Dx is the size of a grid cell: f ¼ f0 þOðDx2Þ. Algorithms that have second-order error are
often called second-order algorithms, though they are accurate to only first-order.)

The standard Yee FDTD algorithm [1], which has second-order error, can be easily extended to handle
isotropic dielectrics. Extending that algorithm to materials with general dielectric tensors is non-trivial:
algorithms that appear to be physically reasonable may lead to instabilities that appear at late times in the
simulation – instabilities with growth rates unchanged by reducing the time step. The problem with tensor
dielectrics occurs when the dielectric varies in space, e ¼ eðx; y; zÞ, because the Yee algorithm locates the dif-

ferent components of the electric field at different places within a single grid cell (see Fig. 1). A tensor dielectric
introduces an interaction between, e.g., x and y components of the electric field E and displacement
D : Dy ¼

P
leylEl. This operation, complicated by the differing locations of, e.g., Ex and Dy, can lead to

instability.
This kind of instability, resulting from an asymmetry in the field update algorithm, usually grows slowly

enough (though we are not aware of any guarantee of slowness) that simulations may still be useful, despite
being unstable in this sense; in some cases the instability grows too slowly to be noticed at all. In particular,
simulations with significant dissipation, especially scattering simulations with absorbing boundary conditions,
are insensitive to this instability; indeed, several algorithms have been developed and tested in scattering sim-
ulations without noticing the instability. Even without dissipation (as in resonant cavity simulations), useful
information can sometimes be extracted before the instability dominates; however, a stable algorithm takes
away any worry that an instability might diminish the accuracy of a simulation.

Ref. [2] proposed an algorithm for tensor dielectrics, and determined its accuracy (second-order error) and
stability in time (i.e., the maximum time step, such that any simulation with a greater time step will be unsta-
ble). However, we have found that their algorithm can lead to late-time instabilities in a non-uniform dielec-
tric. The same algorithm was proposed earlier in [3] (which allows the dielectric to have finite conductivity)
and tested on scattering simulations. Another method [4] uses an effective tensor dielectric to improve the
accuracy of isotropic dielectrics with sharp interfaces. When tested with scattering simulations, where
late-time instabilities would not appear, this method had smaller error than the basic Yee scheme, but still
yielded first-order error. However, Ref. [5] states that this method was numerically unstable for photonic
crystal band simulations. Ref. [5] describes a method for finding an effective tensor dielectric to compensate
for grid cells partially filled with an isotropic dielectric; the algorithm presented in [2] is then applied to the
effective dielectric. They state that they obtained second-order error when computing the lowest-frequency
band of a photonic crystal with a discontinuous (isotropic) dielectric. Again, our work indicates that this
algorithm is generally late-time unstable when used with effective dielectrics that have non-diagonal terms,
and the effective dielectric used in [5] will have non-diagonal terms for any isotropic dielectric object with
curved surfaces.

Ref. [6] describes a different FDTD scheme (based on transmission-line matrices, it does not reduce to the
Yee scheme in case of isotropic dielectric) in which all field components are at the same point; however, only
results from 1D scattering problems are presented. Ref. [7] presents a quasi-2D algorithm for simulating
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Fig. 1. Field components in one grid cell of the Yee mesh.
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modes in a waveguide of uniform tensor dielectric; the algorithm is similar to that used in Refs. [2,3] (which is
stable when applied to uniform dielectric). Ref. [8] treats scalar dielectric but tensor permeability using a Yee
mesh with some extra components; it collocates field components in a manner resembling that of Refs. [2,3],
but it is applied to lossy ferrites, where dissipation would counteract slowly growing instabilities. Ref. [9]
describes simulations with a different sort of tensor dielectric, describing gyrotropic material (the dielectric ten-
sor is complex and Hermitian, and frequency-dependent). They avoid the problem of component collocation
by considering 1D scattering problems, where the non-diagonal anisotropy connects only field components
located at the same point.

Other articles have offered methods for simulating isotropic dielectrics with sharp interfaces: for example
[10–12] describe methods that use effective diagonal dielectrics, while [13] uses an effective tensor dielectric
in 2D simulations. There are also methods that, rather than using an effective dielectric in each grid cell, alter
the shapes of the cells to coincide with the dielectric shape, such as [14], which has interesting parallels to this
paper, running into an accuracy versus stability trade-off, thwarted by the need to collocate different field com-
ponents. While some of these methods reduce the error, they do not seem to be able to reduce the order of
error to second-order.

In this paper, we develop a stable algorithm for anisotropic dielectrics in three dimensions. We start from
the Yee algorithm and show four basic ways to collocate the field components so that the dielectric tensor can
be applied: El ¼

P
me
�1
lm Dm. Of these four ways, two yield symmetric, positive semidefinite operators and so

guarantee stability (with small enough time step). We then show numerical results. We find late-time instabil-
ity for the asymmetric update operators. Over the same period of time, as expected, symmetric updates remain
stable. Our convergence studies for the symmetric algorithm show that it has second-order error with contin-
uous dielectrics, and we can obtain mode frequencies with third-order error using Richardson extrapolation.
Mode frequencies for discontinuous dielectrics have first-order error, even when using an effective dielectric
method within each grid cell as in [5]. However, with the effective dielectric, frequencies can be obtained by
Richardson extrapolation with second-order error.

The next section reviews the Yee algorithm and its stability. Section 3.1 discusses the issues of field collo-
cation, and in Section 3.2 we determine the symmetry (hence stability) of the possible update operators.
Section 4 contains our numerical results for continuous dielectrics, while Section 5 illustrates results for dis-
continuous dielectrics.

2. The Yee algorithm

The Yee algorithm for FDTD electromagnetics [1] integrates the dynamic Maxwell equations:
oB

ot
¼ �r� E; ð1Þ

oE

ot
¼ r� B; ð2Þ
using finite-difference approximations. The Yee algorithm has the great advantages of simplicity, preserving
important physical principles (such as r � r � B ¼ 0), and accuracy up to OðDx2Þ error, where Dx is the grid
cell size. The Yee algorithm achieves second-order error by locating field components at different positions, as
shown in Fig. 1, so that all finite differences in Maxwell’s equations are centered (cf. [15]). Electric field com-
ponent El is placed at the l-edge center, while magnetic field component Bl is placed at the l-face center. No
two field components are known at exactly the same point.

We will now demonstrate the stability of the familiar Yee algorithm, introducing notation and concepts
needed later for the dielectric algorithms. We write the discretized Maxwell’s equations in matrix/operator
form, with each field being a single column vector with components labeled by indices i, j, k (integers describ-
ing spatial location on the grid), and l (x, y, or z, describing the 3D vector component): field values on the Yee
mesh are
Eijkl ¼ Elððiþ 0:5dxlÞDx; ðjþ 0:5dylÞDy; ðk þ 0:5dzlÞDzÞ; ð3Þ
Bijkl ¼ Blððiþ 0:5½1� dxl�ÞDx; ðjþ 0:5½1� dyl�ÞDy; ðk þ 0:5½1� dzl�ÞDzÞ; ð4Þ
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where the Kronecker deltas ensure that the l component of the electric field is placed at the l-edge center, and
the l component of the magnetic field is at the l-face center, as in the Yee mesh (Fig. 1).

At the heart of the algorithm is the difference operator. The forward/backward (+/�) difference operator in
the x-direction is denoted by o

�
x ; it can be represented as a matrix with rows (ijkl) and columns (i 0j 0k 0l 0):
o
�
x;ðijklÞði0j0k0l0Þ ¼ �

dðijklÞði0j0k0l0Þ � dðijklÞði0�1;j0k0l0Þ

Dx
; ð5Þ
where dðijklÞði0j0k0l0Þ ¼ dii0djj0dkk0dll0 is one if i = i 0, j = j 0, k = k 0, and l = l 0, and zero otherwise. o
þ
x is the forward

difference in the x direction; for example, we could approximate oEl=ox at grid cell (i, j,k) by forward differ-
encing thus:
ðoþx EÞijkl ¼
X

i0j0k0l0

o
þ
x;ðijklÞði0j0k0l0ÞEi0j0k0l0 ¼

1

Dx
½�Eijkl þ Eiþ1;jkl�; ð6Þ
or by backward differencing:
ðo�x EÞijkl ¼
X

i0j0k0l0

o�x;ðijklÞði0j0k0l0ÞEi0j0k0l0 ¼
1

Dx
½Eijkl � Ei�1;jkl�: ð7Þ
Difference operators in the y and z directions are defined analogously, shifting the «1 from i 0 to j 0 and k 0,
respectively. The y in oþy is not a tensor component ðoþx , oþy , and oþz are not the components of some vector
operator); technically, oþx is a matrix ðoþx Þijkl;i0j0k0l0 , although, since it is proportional to dl;l0 , we often drop
the l subscripts. (We often drop the other subscripts for simplicity.)

From the difference operators we construct curl operators. Because the lth component of the curl of two
vectors, vl and wl, can be written as ðv� wÞl ¼

P
m;j�lmjvmwj, where � is the completely antisymmetric tensor,

the forward and backward curl operators can be written as
½r� � �ðijklÞði0j0k0l0Þ ¼
X

m

�lml0o
�
m;ðijkÞði0j0k0Þ: ð8Þ
Applied to a vector field Eijkl
ð½r���EÞijkl ¼
X

i0j0k0l0m

�lml0o
�
m;ðijkÞði0j0k0ÞEi0j0k0l0 : ð9Þ
With E and B on the Yee mesh (Fig. 1), the dynamic Maxwell equations are then (in the absence of currents,
and with convenient units):
oB
ot
¼ �½rþ��E oE

ot
¼ ½r���B: ð10Þ
These equations describe the spatial discretization of the Yee algorithm. Combining them, we have
o2B
ot2
¼ �½rþ��½r���B: ð11Þ
Here we can see the connection between the spatially discretized operator ½rþ��½r��� and the mode frequen-
cies. Any eigenmode B behaves like a harmonic oscillator with x2 equal to its spatial eigenvalue. If the
operator ½rþ��½r��� has a complete basis of eigenmodes with only real, non-negative eigenvalues, then x
will always be real, and no eigenmode will decay or grow with time (as noted in [16]).

As we are about to show, the operator ½rþ��½r��� is symmetric and positive semidefinite, so it is diago-
nalizable, and all its eigenvalues are non-negative; therefore, any solution to Eq. (11) is the sum of eigenmodes
with real frequencies. First, we find the transpose of the difference operator as a matrix (suppressing the 3D
vector component indices):
ðo�x Þ
T
ðijkÞði0j0k0Þ ¼ o�x;ði0j0k0ÞðijkÞ ¼ �

1

Dx
½dði0j0k0ÞðijkÞ � dði0j0k0Þði�1;jkÞ� ¼ �

1

Dx
dðijkÞði0j0k0Þ � dði0�1;j0k0ÞðijkÞ
� �

¼ �o
�
x;ðijkÞði0j0k0Þ: ð12Þ
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The difference operator itself is not symmetric: ðoþx Þ
T ¼ �o�x 6¼ oþx . Using this result, we find the transpose of

the curl operator:
½r� � �ðijklÞði0j0k0l0Þ

� �T

¼ ½r� � �ði0j0k0l0ÞðijklÞ ¼
X

m

�l0ml o
�
m;ði0j0k0ÞðijkÞ

� �
¼
X

m

ð��lml0 Þ �o
�
m;ðijkÞði0j0k0Þ

� �
¼ ½r� � �ðijklÞði0j0k0l0Þ: ð13Þ
That is, ½r� � �T ¼ ½rþ��; therefore
½rþ��½r��� ¼ ½r� � �T½r��� ð14Þ

is a symmetric, positive semidefinite operator (any matrix M ¼ ATA is symmetric, and also positive semidef-
inite, because for any eigenvector v with eigenvalue k, kkvk2 ¼ vTMv ¼ vTATAv ¼ kAvk2 P 0). Eigenmodes
of the standard Yee algorithm therefore have real frequencies.

Just as the spatial discretization could have led to instability (if it had supported modes with complex fre-
quencies), temporal discretization can also lead to instability. In this paper we will not be very concerned with
temporal discretization, but we mention it for completeness. In the Yee scheme, the electric and magnetic fields
are leap-frogged. This method is simple, efficient, and has second-order error (in the time step, Dt). For sta-
bility, the time step must be smaller than the period of the highest-frequency mode; more precisely, for the
leap-frog advance the stability criterion is (cf. [15])
xmaxDt < 2; ð15Þ

where xmax is the maximum frequency, or the square root of the maximum eigenvalue of the operator on the
right side of Eq. (11). This leads to the well-known Courant–Friedrichs–Lewy condition for stable integration
of Maxwell’s equations using the Yee method. Algorithms that are stable only for small enough time steps are
called ‘‘conditionally stable’’. Transgressing the CFL condition, which is imposed by temporal discretization,
results in a catastrophic instability that manifests itself after only several time steps. In contrast, growing
modes due to spatial discretization may not become apparent for tens of thousands, even hundreds of thou-
sands of time steps, and reducing the time step does not mitigate the instability (solutions will grow at the rate
determined by their complex frequencies, regardless of the time step). For the rest of this paper, we will con-
sider stability with respect to only spatial discretization. Stability for temporal discretization can be achieved
by determining xmax and setting the time step accordingly; in practice, we use Dt ¼ 0:99½c2ð1=Dx2 þ 1=Dy2 þ
1=Dz2Þ��1=2.

3. Modification of the Yee algorithm for tensor dielectrics

In the presence of ideal dielectric materials (that are neither dissipative nor active), the electric displacement
D differs from E. The equations to solve are Faraday’s Law (Eq. (1)) and
oD

ot
¼ r� B; ð16Þ

E ¼ nD; ð17Þ
where n ¼ e�1. If B and E are located as usual on the Yee mesh (see Fig. 1), and D is located at the same places

as E, then we already know how to perform the FDTD update of Eq. (1) and the first equation above, accord-
ing to the Yee algorithm, with second-order error. In the next section we will concentrate on the equation con-
verting between E and D for a smoothly varying dielectric. Then we will discuss the stability of the resulting
algorithm.

3.1. Collocation of field components for conversion between E and D

To convert from D to E in continuous space, one simply multiplies by the inverse dielectric tensor:
Em ¼

P
lnmlDl, where Em, nml, and Dl are all evaluated at the same point. In our discretized approximation,

however, we do not know, e.g., Dx and Dy at the same point. Simply calculating Ex ¼
P

lnxlDl, taking Dl
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from the nearest locations, yields Ex with an error proportional to the grid cell length Dx, even if the Dl are
exact. To achieve second-order error, one must interpolate the Dl to the location of Ex: for example, if Dx is
known at the centers of the x-edges in a cell:
Dxð0; y; zÞ ¼
1

2
½Dxð�Dx=2; y; zÞ þ DxðDx=2; y; zÞ� þOðDx2Þ ð18Þ
is an interpolation with second-order error – as long as Dx has a continuous derivative in the x direction. Such
an interpolation can accurately collocate components within a smoothly varying dielectric, but not around a
sharp dielectric interface, where D is discontinuous; we will address sharp interfaces in Section 5.

We now introduce interpolation operators. The interpolation operator for the x-direction is
I�x;ðijklÞði0j0k0l0Þ ¼
1

2
½dðijklÞði0j0k0l0Þ þ dðijklÞði0�1;j0k0l0Þ�: ð19Þ
I�y and I�z are analogously defined. For example, the y component of the electric field interpolated to the point
half-way between ði; j; kÞ and ði; jþ 1; kÞ would be
ðIþy EÞijky ¼
1

2
½Eijky þ Ei;jþ1;ky �: ð20Þ
The I�l all commute; for all l and m: 0 ¼ ½Iþl ; Iþm � ¼ ½I�l ; I�m � ¼ ½Iþl ; I�m �.
With these operators, we describe the interpolation of the components of D to the location of Ex with

second-order error:
Dðat ExÞijkx ¼ Dijkx; ð21Þ

Dðat ExÞijky ¼ ðI�y Iþx DyÞijk ðsee Fig: 2aÞ; ð22Þ

Dðat ExÞijkz ¼ ðI�z Iþx DzÞijk: ð23Þ
The Dx to D(at Ex)x conversion is trivial since Dx is already at the same place as Ex.
Once we know the components of D at the same location, we can perform the matrix multiplication by the

inverse dielectric tensor n ¼ e�1 to get E at that location. Treating n as a matrix diagonal in the spatial indices:
nðijklÞði0j0k0mÞ ¼ nijklmdðijkÞði0j0k0Þ; ð24Þ
we can write a shorthand matrix equation that shows the vector components explicitly, but hides the spatial
components, so that
ðExÞy ¼ nxyIþx I�y Dy ð25Þ
describes the interpolation of Dy to the location of Ex and the subsequent multiplication by nxy (as shown in
Fig. 2a).

We now consider other ways of collocation and application of the inverse dielectric tensor. For l = y, there
are four ‘‘simple’’ possibilities with second-order error, illustrated in Fig. 2:
ðaÞ ðExÞy ¼ nxyðx-edge-centerÞIþx I�y Dy ¼ nxe
xyIþx I�y Dy ;

ðbÞ ðExÞy ¼ Iþx I�y nxyðy-edge-centerÞDy ¼ Iþx I�y nye
xyDy ;

ðcÞ ðExÞy ¼ Iþx nxyðnodeÞI�y Dy ¼ Iþx nn
xyI
�
y Dy ;

ðdÞ ðExÞy ¼ I�y nxyðz-face-centerÞIþx Dy ¼ I�y nxyf
xy Iþx Dy :

ð26Þ
The same options are available for ðExÞz, mutatis mutandis. We designate the location of n with superscript
abbreviations: xe for x-edge-center; xyf for z-face-center; and n for node.

For ðExÞx, we have two possibilities:
ðeÞ ðExÞx ¼ nxxðx-edgeÞDx ¼ nxe
xxDx;

ðfÞ ðExÞx ¼ Iþx nxyðnodeÞI�x Dx ¼ Iþx nn
xyI
�
x Dx:

ð27Þ



Fig. 2. The four methods of interpolating and multiplying by nxy to get the part of Ex that comes from Dy, from Eq. (26).
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Choosing option (27e) will ensure that this algorithm reduces to the Yee algorithm when the dielectric tensor is
diagonal. Option (27f), when paired with option (26c), has an attractive consistency of form and puts all
dielectric components at the cell node; unfortunately, this option has poor dispersion (the phase velocity of
light goes to zero at short wavelengths for certain directions and polarizations, so that a low-frequency exci-
tation may excite an unphysical, short-wavelength mode).

We can write El ¼
P

mNlmDm or, more carefully:
Eijkl ¼
X

i0j0k0l0

NðijklÞði0j0k0l0ÞDi0j0k0l0 ; ð28Þ
as the method for updating the electric field from the displacement. This ‘‘inverse dielectric tensor’’ operation
on the grid is not as simple as multiplying by a simple 3 · 3 matrix in each grid cell:
NðijklÞði0j0k0mÞ 6¼ nijklmdðijkÞði0j0k0Þ: ð29Þ
To achieve second-order error, as we’ve discussed, we need a centered interpolation of D. For example, if we
use scheme (26a) the matrix N will have elements like
NðijkxÞði00j00k00yÞ ¼ nxe
ijkxy

X
i0j0k0

Iþx;ðijkyÞði0j0k0yÞI
�
y;ði0j0k0yÞði00j00k00yÞ; ð30Þ
where nxe
ijkxy is the xy component of the inverse dielectric tensor at the location of Eijkx. While the schemes in

this section have second-order error, they are not all stable; we will discuss stability in the next section.

3.2. Ensuring diagonalizability and non-negative eigenvalues for stability

Spatial discretization can lead to instability if the resulting eigenmodes can have complex frequencies. In
continuous space, solutions to Maxwell’s sourceless equations neither grow nor decay in time – field energy
is conserved (as long as dielectric media are neither dissipative nor active). In discrete space, however, there
may be growing or decaying modes if the discretized update operator has complex eigenvalues.

The standard Yee update (see Section 2) is stable because its discretization of the $·$· operator is sym-
metric and positive semidefinite – it is diagonalizable, and its eigenvalues are real and non-negative; mode fre-
quencies, square roots of those eigenvalues, are therefore real. To show that our algorithm is stable with tensor
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dielectrics, we need to show that the discretization of the r� nr� operator is symmetric and positive
semidefinite.

In the presence of tensor dielectrics, the time-advance of E becomes (in continuous space)
oE=ot ¼ nr� B; ð31Þ
where n is the inverse dielectric tensor. The discretization of this equation leads to the equations
oB
ot
¼ �½rþ��E oE

ot
¼ N½r���B ð32Þ
or
x2B ¼ ½rþ��N½r���B; ð33Þ

where N is the discretized ‘‘inverse dielectric tensor’’ from Section 3.1.

If NT ¼ N, then the operator ½rþ��N½r��� is symmetric; if, in addition, N is positive semidefinite, then the
operator is positive semidefinite as well. (A symmetric, positive semidefinite matrix has a symmetric square
root; if N is symmetric and positive semidefinite, there exists a matrix A such that A2 ¼ ATA ¼ N. Therefore
½rþ��N½r��� ¼ ðA½r���ÞTA½r��� is symmetric and positive semidefinite too. We showed in Section 2 that
any matrix that can be written BTB for some operator B is symmetric and positive semidefinite. To see that a
symmetric, positive semidefinite matrix N has a square root, diagonalize it: N ¼ RTDR for some orthogonal
matrix R and non-negative, diagonal matrix D. The square root of N is RT

ffiffiffiffi
D
p

R.)
We can now examine the algorithms from Section 3.1 to see whether they are symmetric and positive semi-

definite. The algorithm combining (26a) and (27e) can be written thus:
Nlm ¼ dlmnll þ ð1� dlmÞnlmI
þ
l I�m : ð34Þ
Its transpose, since ðIþl Þ
T ¼ I�l , is
ðNÞTlm ¼ dmlnmm þ ð1� dmlÞðI�l Þ
TðIþm Þ

Tnml ¼ dlmnll þ ð1� dlmÞIþl I�m nml: ð35Þ
For an arbitrary tensor dielectric varying in space, N is not symmetric with schemes (26a) and (27e) even when
the dielectric tensor is symmetric at every point in space; N is not symmetric because (1) the interpolation ruins
the symmetry, and (2) nijklm need not equal nijkml because they are located at different places. If n is uniform,
however, then N is symmetric.

Of the four ways of finding ðExÞy , (26c) and (26d) are symmetric and positive semidefinite when N is sym-
metric and positive semidefinite, while (26a) and (26b) are transposes of each other. Both ways of finding ðExÞx
lead to symmetric, positive semidefinite algorithms. Although a linear combination of these different algo-
rithms for conversion between D and E would still have second-order error, even a symmetric linear combi-
nation might not be positive semidefinite. Ruling out (27f) because of its poor dispersion, we are most
interested in the combination of (27e) along with either (26c) or (26d), both of which produce positive semi-
definite N. We will demonstrate the algorithms (27e) and (26c) in the next section.

4. Numerical results for continuously varying dielectrics

In the previous section, we found two symmetric and positive semidefinite algorithms for finite difference
electromagnetics with tensor dielectrics; those algorithms are guaranteed to be stable (as long as the time step
is small enough). We could not determine analytically whether the other two (asymmetric) algorithms were
diagonalizable and positive semidefinite, but we will demonstrate experimentally that one of those algorithms
does indeed lead to instability (no matter how small the time step). On the other hand, the same simulation
experiences no instability when using a symmetric, positive semidefinite algorithm; we will demonstrate the
second-order error of this stable algorithm. Finally, we will show how Richardson extrapolation can reduce
the error by another order, using the frequencies extracted from two simulations with different grid
resolutions.

Both algorithms, stable and unstable, were implemented within the VORPAL [17] simulation framework.
We then calculated band frequencies of a cubic lattice (with lattice constant a) of spheres, with dielectric
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varying smoothly from sapphire to vacuum, for a given Bloch wave-vector (for an introduction to photonic
crystals, see, e.g. [18]). The dielectric tensor at the center of the spheres was set to
e ¼
10:225 �0:825 �0:55

ffiffiffiffiffiffiffiffi
3=2

p
�0:825 10:225 0:55

ffiffiffiffiffiffiffiffi
3=2

p
�0:55

ffiffiffiffiffiffiffiffi
3=2

p
0:55

ffiffiffiffiffiffiffiffi
3=2

p
9:95

0B@
1CAe0; ð36Þ
which is the dielectric constant for sapphire, with ek ¼ 11:6e0 along the y-direction and e? ¼ 9:4e0 perpendic-
ular to y, subsequently rotated 30� about the x-axis, and then 45� about the z-axis. We then made a smooth
transition between sapphire and vacuum by interpolating each element of the dielectric tensor e from sapphire
at radius (squared) r2 ¼ ð0:3aÞ2 to vacuum at r2 ¼ ð0:45aÞ2. We used a cubic interpolation, demanding that the
derivatives vanish at the end points. (A linear interpolation, with discontinuous first derivatives, does not spoil
the order of accuracy of the algorithm.)

In these simulations, we analyzed a single unit cell of the lattice, with lattice constant a = 1 m, imposing
phase-shifted periodic boundary conditions to find mode frequencies corresponding to the Bloch wave-vector
k ¼ ð2p=aÞ � ð0:1; 0:2; 0:3Þ. We excited the cavity with a current pulse t e�t2=2r2

(meant to excite a broad range
of low frequencies) at a point, with r = a/c where c is the speed of light in vacuum. Then we tracked a field
component at every time step (which was 0.99 times the Courant–Friedrichs–Lewy maximum time step), and
then Fourier-transformed the time-series to find the mode frequencies, using a vocoder-based method to
extract precise values (see Appendix A).

To illustrate that instability can occur for asymmetric update operators, we implemented the schemes (26a)
and (27e) described in Section 3.1 (also described in Refs. [2,3,5]):
DEl ¼ Dt nle
llð½r���BÞl þ

X
m 6¼l

nle
lmI
þ
l I�m ð½r���BÞm

" #
: ð37Þ
The magnetic field is updated in the usual way,
DB ¼ �Dt½rþ��E: ð38Þ

Fig. 3 shows the resulting time-behavior using an 8 · 8 · 8 grid for the lattice unit cell; the instability is not
apparent for tens of thousands of time steps (here 10,000 time steps is nearly 200 periods of the lowest mode)
but subsequently overwhelms the simulation. The instability grows as ect, where c=x0 � 2� 10�3 and x0 is the
frequency of the lowest mode (1.61c/a).

The instability is not present with the symmetric, positive semidefinite algorithm obtained by combining
(26c) and (27e) in Section 3.1:
DEl ¼ Dt nle
llð½r���BÞl þ

X
m 6¼l

Iþl nn
lmI
�
m ð½r���BÞm

" #
: ð39Þ
With this algorithm, off-diagonal elements of n are located at the nodes of each grid cell (enforcing nlm ¼ nml),
while the diagonal elements nll are located with El. This algorithm shows no instability, even for simulation
times much longer than those of Fig. 3.

Able to run simulations stably for long times, we tracked a field component at every time step, and
extracted the frequencies present. Fig. 4 shows the relative error in frequencies for the lowest 8 modes, com-
pared against our best-value frequencies, which we got by Richardson-extrapolating from N = 64 and
N = 128 (grid cells per lattice constant) assuming second-order error. The results show second-order error
in Dx / 1=N . Even more convincing, Richardson extrapolation (assuming second-order error) from successive
simulations, N = 8 and N = 16, then N = 16 and N = 32, and so on, yields frequencies with roughly third-
order error (Fig. 5).

The two lowest bands usually yield lower error than the other bands, because they have relatively long
wavelengths that render them insensitive to small-scale variations in the dielectric. Instead they behave as if
in a uniform medium, somewhere between vacuum and dielectric; a band diagram reflects this, showing these
two lowest modes (one for each polarization) in the region of linear dispersion (plane-wave propagation at
constant speed, as in a uniform medium).
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5. Numerical results for discontinuous dielectrics

A frequency-domain solver, the MIT photonic bands code [19], achieves second-order error using a method
of finding an effective dielectric to transform a discontinuous dielectric tensor into a dielectric tensor averaged
over each grid cell. We applied the same method to find the effective dielectric over one-grid-cell volumes: each
element of n was taken from the effective dielectric tensor for the one-cell volume centered at the location of
that element of n. For example, we found off-diagonal elements from the effective dielectric of node-centered
cell volumes, and nll was taken from the effective dielectric of the cell volume centered at the location of El.
With this method of computing the (inverse) dielectric tensor, we tested our algorithm on a cubic lattice of
sapphire spheres of radius r = 0.4a with a dielectric tensor given in Eq. (36).

As in the case of the continuous dielectric, we found the frequencies of the first several modes for the Bloch
wave-vector of k ¼ ð2p=aÞ � ð0:1; 0:2; 0:3Þ by exciting many modes, letting them ring, and then extracting indi-
vidual mode frequencies. We compared the mode frequencies against those found using the MIT photonic
bands (frequency-domain) code, with Richardson extrapolation assuming second-order error; these best esti-
mates are given in Table 1.

Fig. 6 shows the error in mode frequencies, compared to the results in Table 1, versus the number of grid
cells per length a. The error appears second-order for coarse grid resolution, but then changes to first-order at
finer resolutions (as mentioned in the continuous dielectric case, the first two bands are exceptional because
they have wavelengths larger than the lattice constant, and see a practically uniform effective medium).
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Table 1
Our best estimate for the frequencies of the first eight modes, obtained using the MIT photonic bands code and Richardson extrapolation
from grids of size 643 and 1283

Mode Frequency f (c/a)

1 0.261373
2 0.269798
3 0.389460
4 0.411564
5 0.422541
6 0.498700
7 0.519614
8 0.537272

Frequencies are given in units of c/a, where c is the speed of light, and a the lattice constant.

10 100

10–5

10–4

10–3

10–2

10–1

Grid Cells Per Lattice Constant

R
el

at
iv

e 
E

rr
or

O(Δ x)

O(Δ x2)

band 1
band 2

band 3

band 4

band 5

band 6

band 7
band 8

Fig. 6. Relative error in mode frequencies of the lowest eight modes versus number of grid cells divisions per length a.
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(where d is the dimension), the error can be one order worse on OðNd�1Þ cells, or two orders worse on OðN d�2Þ
cells without changing the global order of error.

The observed first-order error seems to stem from the interpolation of a discontinuous field across sharp
dielectric interfaces for the following reasons. Continuous dielectric simulations yield second-order error;
modes in 2D simulations (of dielectric rods) with the electric field perpendicular to the simulation plane also
yield second-order error, because the electric field is continuous (2D modes with the electric field in the plane,
however, yield first-order error). In addition, isotropic dielectric cubes aligned with the grid axes also yield
second-order error when the dielectric is averaged as above (since, except at corners of the dielectric object,
no interpolation of field components is needed because the effective dielectric is diagonal).

The apparent second-order error shown in Fig. 6 for coarse resolutions might be explained by the discon-
tinuities in the fields at dielectric interfaces being comparable to or less than the change in the fields over a
single grid cell; in such cases, the error in interpolating a discontinuous function at the dielectric interface
becomes relatively less important than the errors introduced by the finite-difference approximation to the
spatial derivatives over the entire volume.
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Although using an averaged dielectric in partially filled grid cells did not reduce the error of an individual
simulation to second order, it did allow Richardson extrapolation from two simulations, one at half the res-
olution of the other, to obtain frequencies with second-order error. In contrast, using a stair-stepped dielectric
resulted in frequencies that fluctuated wildly with resolution (as shown in Fig. 7), preventing extrapolation to
higher order. To compute average dielectric quantities within a single grid-cell volume, we found it necessary
(for Richardson extrapolation) to approximate the dielectric interface in each cell-volume with several planar
triangles and to calculate the fraction of the cell volume inside and outside the approximate surface. (Richard-
son extrapolation did not yield higher order error when we simply averaged dielectric quantities at roughly 300
points within each grid cell.)

6. Conclusion

We have developed an algorithm that stably advances electromagnetic fields defined on a Yee mesh by
ensuring that the inverse-epsilon matrix for the spatially differenced system is symmetric, even when the prin-
cipal axes of the dielectric tensor are not aligned with the grid. For contrast we showed that other options for
obtaining E from D, while having the same order of accuracy, are subject to late-time instabilities. The algo-
rithm therefore allows materials such as sapphire and quartz to be stably simulated in any orientation. For
continuously varying dielectrics we demonstrated second-order error of the algorithm (in the grid cell size
Dx) by computing band frequencies of a photonic crystal. Using an effective dielectric in each grid cell, dielec-
trics with sharp interfaces can be simulated with first-order error, and the results can be Richardson-extrap-
olated to yield frequencies with second-order error.

Our results seem to be at odds with those of [5], in which the authors show apparent second-order error by
using the algorithms (26a) and (27e), along with the effective dielectric method derived in [19]. In contrast, we
see first-order error, even though the symmetric algorithm we demonstrated is very similar to the asymmetric
algorithm of Ref. [5]. Indeed, we see this first-order error even for isotropic, though discontinuous, dielectrics
(for isotropic dielectric objects with curved surfaces, the effective dielectric method of [19] leads to anisotropic
tensor dielectric in partially filled grid cells). The resolution of this contradiction is unclear. It might be due to
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the unusually low error (observed here) in the first mode, since [5] considers only the lowest mode. It might
also be related to the apparent necessity of averaging the effective dielectric of a two-cell-length region in
[5] to obtain second-order error. (The results from averaging over a single grid cell did not show very convinc-
ing second-order behavior.) Perhaps the two-cell-length averaging simply moves the second- to first-order
transition (which we observe) to a finer resolution by increasing the error at coarse resolutions. Further study
is needed to resolve this issue definitively.

We also found that the algorithm of [5] can be unstable, even for isotropic, discontinuous dielectrics (which,
as noted, lead to anisotropic dielectric in partially filled grid cells). In this case, the resolution may simply be
that instability was not seen in [5] because it takes a long time to appear.
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Appendix A. Extracting mode frequencies

To extract mode frequencies and amplitudes from a time series f ðtnÞ, where tn ¼ nDt, n ¼ 0; 1; 2; . . . ;
N � 1þM , we can start with a Fourier transform. However, the Fourier transform is limited to a frequency
accuracy of 1/T, where T is the length of time over which the data are sampled. If it is known that f(t) is the
sum of several isolated sinusoids, then one can measure the frequencies with much greater precision. If the
mode frequencies are separated by at least a few 1/T, we have used the following method, based on the voco-
der method (see, for instance [21]), to extract precise frequencies quickly. The phase vocoder extracts phase-
shift information by comparing the Fourier transform of the timeseries with the transform of the timeseries
shifted by a small time s ¼ MDt. Alternatively, one may prefer the method of [22] to extract frequencies from
time series data.

To facilitate the analysis, we introduce a correspondence between lower case functions gðtnÞ, and upper
case functions GðtnÞ. We will consider gðtnÞ to be defined for n ¼ 0; 1; . . . ;N � 1þM , while GðtnÞ is defined
for all integer n, with gðtnÞ ¼ GðtnÞ for 0 6 n < N þM . This distinction makes it clear that the Fourier trans-
form of g is defined for discrete frequencies, whereas the Fourier transform of G is defined for continuous
frequencies.

We define a function F ðtnÞ for all n, but equal to f ðtnÞ for n ¼ 0; 1; . . . ;N � 1þM . Similarly, we will define
a window function HðtnÞ, which is zero for n < 0 and n P N þM , and hðtnÞ ¼ HðtnÞ is defined only for
0 6 n < N þM .

If f(t), or F(t), is the sum of J different sinusoids:
F ðtÞ ¼
XJ

j¼1

Aj eiXjt; ðA:1Þ
then the (windowed) Fourier transform of GðtÞ ¼ HðtÞF ðtÞ is
eGðxÞ 	 Dt
2p

X1
n¼�1

HðtnÞF ðtnÞe�ixtn ¼
X

j

Aj
eH ðx� XjÞ: ðA:2Þ
The windowed Fourier transform of F(t) shifted by time s is the transform of GsðtÞ 	 HðtÞF ðt þ sÞ:
eGsðxÞ ¼
Dt
2p

X
n

HðtnÞF ðtn þ sÞe�ixtn ¼ Dt
2p

X
n;j

HðtnÞAj eiXjðtnþsÞ e�ixtn ¼
X

j

Aj
eH ðx� XjÞeiXjs: ðA:3Þ
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Since GðtnÞ vanishes except for 0 6 n < N
~gðxmÞ 	
1

N

XN�1

n¼0

gðtnÞe�ixmtn ¼ 2p
NDt

eGðxmÞ ðA:4Þ
for xm ¼ m 2p
NDt (where m is an integer).

The vocoder method exploits the relationship between G and Gs. If f(t) is a single sinusoid, then
~gsðxmÞ
~gðxmÞ

¼ eiXs: ðA:5Þ
Therefore, one can extract X from the Fourier transforms of g and gs (at any xm). If f(t) has more than one
sinusoid, then
~gsðxmÞ
~gðxmÞ

¼
P

jAj
eH ðxm � XjÞeiXjsP

jAj
eH ðxm � XjÞ

¼
Ak
eH ðxm � XkÞeiXks þ

P
j 6¼kAj

eH ðxm � XjÞeiXjs

Ak
eH ðxm � XkÞ þ

P
j 6¼kAj

eH ðxm � XjÞ
: ðA:6Þ
The window function eH ðxÞ is steeply peaked at x = 0, so that when xm is within the same frequency bin as
Xk, and all other Xj are far away, the j 6¼ k terms can be neglected in the above, and
eiXks � ~gsðxmÞ
~gðxmÞ

; ðA:7Þ
and (now that Xk has been found)
Ak �
eGðxmÞeH ðxm � XkÞ

: ðA:8Þ
Of course, one first has to determine which xm are close to an Xk present in the signal. This is not too difficult;
one simply loops through all the xm, calculating
Xm ¼
1

s
ph

~gsðxmÞ
~gðxmÞ

; ðA:9Þ
for each xm, and keeps the mode only if Xm is close to xm. If s > Dt (or M > 1), one may have to add an appro-
priate multiple of 2p/s to Xm (to make it as close to xm as possible). We have simply used s = Dt.

Thus far we have performed two Fourier transforms (though we have not pursued this, with s ¼ Dt it is
possible to do only one transform [21]), and then performed a division operation for each xm (within the range
of interest), and finally estimated the amplitudes of the modes.

Once one has obtained approximate frequencies, Xð0Þj , and amplitudes, Að0Þj , for all the modes j, one can
refine the results:
exp iXðnþ1Þ
k s

h i
¼
eGðxmÞ �

P
j 6¼kAðnÞj

eH xm � XðnÞj

� �
eiXðnÞj s

eGsðxmÞ �
P

j 6¼kAðnÞj
eH xm � XðnÞj

� � ; ðA:10Þ

Aðnþ1Þ
k ¼

eGðxmÞ �
P

j 6¼kAðnÞj
eH xm � XðnÞj

� �
eH xm � Xðnþ1Þ

k

� � ; ðA:11Þ
where it is understood that in the above, xm is the closest to XðnÞk (and both may change with iteration).

If eH ðxÞ can be evaluated easily (probably analytically) for continuous x, then each iteration above requires
a number of operations proportional to the number of modes. This method is therefore very efficient for find-
ing isolated modes with a very long time series. Although finding modes within a limited frequency range
could be better done by filtering first, we have had success simply by keeping only those Xð0Þ within range
and proceeding with the refinement. One can perform 10 iterations identifying 30 modes from a series with
N = 105 in a few seconds; these iterations may reduce the change in frequency and amplitude from each
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iteration down below one part in 1014. The choice of window is important; we have used a Hann window,
sin2ðpn=NÞ, because it is analytically tractable and has fairly good discrimination properties.

We have assumed that all frequencies are real (and in our photonic crystal band simulations, they must be
real, since the algorithm is stable, and there is no dissipation). An advantage of this method is that one finds a
quantity that is supposed to be eiXk t, which must have unity magnitude; one can tell, to some extent, how much
other sinusoids interfere by how far that quantity is from the origin. For cases in which there might be some
dissipation, we expect this method (slightly modified) to be able to find modes with complex frequencies, but
we have not tried to do this.

So far we have found this method to be remarkably simple and robust, especially when peaks are well-sep-
arated; however, it is very sensitive to mode frequency changes in time, so one must wait until after any driver
has turned off before collecting the time series. During iteration, modes (or rather, their estimated frequencies)
may move around; a good algorithm should note this movement and merge two frequencies if they get close
together. For example, initial guesses from nearby bins xm and xm0 may yield frequencies a few bins apart,
apparently two different modes; after subtracting out other frequencies, however, it may become apparent that
only one mode is present between those frequencies, and the algorithm must realize that. Also, noise may
sometimes lead to identification of a non-existent mode; during iteration, say Xð1Þj may be very far from
Xð0Þj , indicating that there was never a mode near Xð1Þj , and that frequency must be discarded. We have found
that padding the initial time series with zeros (increasing its length by about a factor of two or so) somewhat
reduces problems with mode misidentification.
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